Regional distribution of the locomotor pattern-generating network in the neonatal rat spinal cord.
نویسندگان
چکیده
The regional distribution of spinal cord networks producing locomotor-like, as well as non-locomotor-like, activity was studied with the use of an in vitro neonatal rat preparation. Rhythmic activity was induced by bath application of either serotonin (5-HT), acetylcholine (ACh), N-methyl-D,L-aspartate (NMA), or combined 5-HT/NMA, and was monitored via hindlimb flexor (peroneal) and extensor (tibial) electroneurograms (ENGs) or ventral root recordings. In some experiments, synchronous patterns were produced by the addition of inhibitory amino acid (IAA) receptor antagonists. Selective application of 5-HT to cervical and thoracic cord regions induced rhythmic activity in these segments but failed to evoke hindlimb ENG discharge. Exposure of the isolated lumbar region to 5-HT produced tonic activity only. Application of 5-HT to the whole cord produced locomotor-like activity in hindlimb ENGs that persisted after midsagittal section of the spinal cord from the conus to the thoracolumbar junction. In other experiments, transverse hemisection of the rostral lumbar cord during whole cord exposure to 5-HT abolished rhythmic activity in ipsilateral hindlimb ENGs, suggesting that under these conditions rhythmic activity on one side of the lumbar cord was insufficient to maintain rhythmic activity on the contralateral side. Selective application of NMA or ACh to cervical and/or thoracic cord regions evoked rhythmic activity in these supralumbar segments, as well as rhythmic, but non-locomotor-like, activity in the lumbar region. In contrast to the effect of 5-HT, both NMA and ACh evoked rhythmic activity when applied solely to the lumbar region, and the side-to-side alternation produced by whole cord ACh application was uncoupled by midsagittal lesions of the lumbar region. In the presence of IAA antagonists, the side-to-side coupling of bilaterally synchronous rhythms was maintained despite extensive midsagittal lesions leaving all but one or two segments of either cervical, thoracic, or lumbar cord bilaterally intact, and rhythmic activity could be maintained even in single isolated hemisegments. The effects of 5-HT/NMA were similar to those observed with the use of 5-HT alone, although 5-HT/NMA induced rhythmic activity in hindlimb ENGs when applied selectively to supralumbar regions. The results suggest that 1) a 5-HT-sensitive oscillatory network, capable of producing a locomotor-like pattern of activity, is distributed throughout the supralumbar region of the spinal cord and mediates descending rhythmic drive to lumbar motor centers; 2) NMA- and ACh-sensitive rhythmogenic elements are distributed throughout the spinal cord, including the lumbar region; and 3) the spinal cord contains an extensive propriospinal network of reciprocal inhibitory and excitatory connections characterized by redundantly organized side-to-side projections.
منابع مشابه
Effects of Valproic Acid, a Histone Deacetylase Inhibitor, on improvement of Locomotor Function in Rat Spinal Cord Injury Based on Epigenetic Science
Background: The primary phase of traumatic spinal cord injury (SCI) starts by a complex local inflammatory reaction such as secretion of pro-inflammatory cytokines from microglia and injured cells that substantially contribute to exacerbating pathogenic events in secondary phase. Valproic acid (VPA) is a histone deacetylase inhibitor. Acetylation of histones is critical to cellular inflammatory...
متن کاملDistribution of networks generating and coordinating locomotor activity in the neonatal rat spinal cord in vitro: a lesion study.
The isolated spinal cord of the newborn rat contains networks that are able to create a patterned motor output resembling normal locomotor movements. In this study, we sought to localize the regions of primary importance for rhythm and pattern generation using specific mechanical lesions. We used ventral root recordings to monitor neuronal activity and tested the ability of various isolated par...
متن کاملNeonatal Circuits
Rhythmic patterns of coordinated movement are produced by networks of spinal neurons known as ‘central pattern generators’ (CPGs). These circuits have been studied using isolated spinal cord preparations that can generate a pattern of motor discharge that resembles locomotion (locomotor-like activity). The isolated spinal cord is more experimentally accessible than the equivalent in vivo prepar...
متن کاملAn in vitro spinal cord-hindlimb preparation for studying behaviorally relevant rat locomotor function.
Although the spinal cord contains the pattern-generating circuitry for producing locomotion, sensory feedback reinforces and refines the spatiotemporal features of motor output to match environmental demands. In vitro preparations, such as the isolated rodent spinal cord, offer many advantages for investigating locomotor circuitry, but they lack the natural afferent feedback provided by ongoing...
متن کاملSpinal Cord Electrophysiology
The neonatal mouse spinal cord is a model for studying the development of neural circuitries and locomotor movement. We demonstrate the spinal cord dissection and preparation of recording bath artificial cerebrospinal fluid used for locomotor studies. Once dissected, the spinal cord ventral nerve roots can be attached to a recording electrode to record the electrophysiologic signals of the cent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 77 1 شماره
صفحات -
تاریخ انتشار 1997